2D-to-3D mapping

Mipmap’s overblurring

- Mip-mapping results in **overblurring**
 - occurs when a pixel’s pre-image covers a large number of texels in u direction and only a few in v direction. To avoid aliasing, mip-map of the lowest resolution (indicated by longer edge of quad) is selected, and but resulting in overblurring.

- **Approaches** [Real Time Rendering (2nd ed.), p 137]
 - Rectangular filtering (anisotropic filtering)
 - Ripmap [Advanced OpenGL course notes 98]
 - Extend mip-map to include downsampled rectangular areas as subtextures that can be accessed.
 - Used in high-end HP graphics accelerator in early ’90.
 - Crow’s summed-area table [Crow, Siggraph84]
 - Never implemented in hardware
 - Both are memory intensive.
 - Unconstrained anisotropic filtering
2D-to-3D mapping
Mipmap’s overblurring
2D-to-3D mapping
Ripmap

• Extends the mipmap
 – To include downsampled rectangular areas as subtextures that can be accessed.
 – Four coordinates are used to access ripmap subtexture array
 • Two for a location in the ripmap array
 – Like mipmap, the suitable level, say l, is selected according to the object-eye point distance
 – is computed using the pixel cell’s u and v extents on the texture
 • Usual two (u, v) values to access each subtexture
2D-to-3D mapping
Ripmap

Images on diagonal are the mipmap subtextures.

Images in offdiagonal are other ripmap subtextures.
2D-to-3D mapping
Summed area table

• Pre-computed summed area table
 • Same size as the texture, but contains more bits of precision for the color stored.
 • Each value is the sum of the corresponding texture’s texels in the rectangle formed by this location and texel (0,0) (the origin).

• During texturing, indexed by a rectangular area, whose aspect ratio can vary
 • Pixel’s pre-image is bounded by a rectangle.
 • The max of the four corner of the pre-image are used to access the table.
 • Summed-area table is then accessed to determine the average color of this rectangle.
2D-to-3D mapping
Summed area table

(c) $T(u_r, v_t) - T(u_r, v_b)$

(d) $T(u_l, v_l) - T(u_l, v_b)$
2D-to-3D mapping
Summed area table

Pixel’s cell is back-projected onto the texture, bounded by a rectangle, and the four corners of the rectangle are used to access the summed area table.
2D-to-3D mapping
Antialiasing example (minification)

- Point sampling with nearest neighbor
- Mip-mapping (overblurring)
- Summed area table
2D-to-3D mapping
Unconstrained anisotropic filtering

- Mipmapping and ripmapping prefilter the texture
 - Match the actual spatial frequency after transform the signal onto screen
 - Memory intensive
- But the signal may be stretched in all directions, not only horizontal/vertical directions
- Anisotropic filtering samples texels according to the stretch direction
2D-to-3D mapping
Unconstrained anisotropic filtering

- Reuse existing mipmap hardware
 - The most common method in current graphics hardware
 - Requires no more texture memory than mipmap does
 - Steps
 - Sample a number of mipmap squares that cover the quad derived by back-projecting the pixel cell
 - Combine the samples
2D-to-3D mapping
Unconstrained anisotropic filtering

- Pixel cell is back-projected to a quad on the texture.
- The quad is sampled by a number of mipmap squares that cover the quad
 - The shorter side of the quad determines d
 - The longer side creates a line of anisotropy
 - Parallel to the longer side and through the quad’s middle
 - Take samples along the line of anisotropy according the amount of anisotropy
- The samples are combined
2D-to-3D mapping
Unconstrained anisotropic filtering

- Back projection 4 corners of pixel onto texture
- Length of the shorter side determine the mipmap level used
- Sample the mipmapped texture along the center line of longer sides according to the ratio of longer/shorter sides
2D-to-3D mapping
Unconstrained anisotropic filtering

- Allows the line of anisotropy to run in any direction
- Requires no more texture memory than mipmaps do
- Higher anisotropic ratio can be obtained by
 - Having higher number of parallel pipes in chip sets, or
 - Having the hardware repeatedly sample
 - NVIDIA GeForce3 can perform 8:1 anisotropic filtering
Trilinear mipmap versus anisotropic filtering (16:1). Towards the horizon anisotropic filtering provides a sharper result with minimal aliasing.
2D-to-3D mapping
Unconstrained anisotropic filtering
[from extremtech.com]

- Left: without AF
- Right: with AF

CG (G), Chap 2 Part 2: TM and Buffers